Dear Members of the European Parliament,
Dear Member States of the Council of the European Union,

Joint statement of scientists and researchers on EU’s proposed Child Sexual Abuse Regulation: 4 July 2023

The signatories of this statement are scientists and researchers from across the globe.

First and foremost, we acknowledge that child sexual abuse and exploitation is a very serious crime which can cause lifelong harm to survivors. It is the responsibility of government authorities, with the support of companies and communities, to undertake effective interventions which prevent this crime and react to it quickly when it does happen.

The European Commission has proposed a law with the stated aim of stopping the spread of child sexual abuse material online and of grooming of children online. To do so, the law allows authorities to compel providers of any apps or other online services to scan the messages, pictures, emails, voice mails and other activities of their users. In the case of end-to-end encrypted apps, the claim is that this scanning can be done on users’ devices – so-called ‘Client-Side Scanning’ (CSS).

The effectiveness of the law (at its stated aims) relies on the existence of effective scanning technologies. Unfortunately, the scanning technologies that currently exist and that are on the horizon are deeply flawed. These flaws, which we describe in detail below, means that scanning is doomed to be ineffective. Moreover, integrating scanning at large scale on apps running in user devices, and particularly in a global context, creates side-effects that can be extremely harmful for everyone online, and which could make the Internet and the digital society less safe for everybody.

As the problems we describe speak to measures that are at the core of the EU’s legislative proposal, it is our professional recommendation as scientists that such a proposal be not taken forward. It is not feasible or tenable to require private companies to use technologies in ways that we already know cannot be done safely – or even at all. Given the horrific nature of child sexual abuse, it is understandable, and indeed tempting, to hope that there is a technological intervention that can eradicate it. Yet, looking at the issue holistically, we cannot escape the conclusion that the current proposal is not such an intervention.

Passing this legislation undermines the thoughtful and incisive work that European researchers have provided in cybersecurity and privacy, including contributions to the development of global encryption standards. Such undermining will weaken the environment for security and privacy work in Europe, lowering our ability to build a secure digital society.

The proposed regulation would also set a global precedent for filtering the Internet, controlling who can access it, and taking away some of the few tools available for people to protect their right to a private life in the digital space. This will have a chilling effect on society and is likely to negatively affect democracies across the globe.

We therefore strongly warn against pursuing these or similar measures as their success is not possible given current and foreseeable technology, while their potential for harm is substantial.
1. Detection technologies are deeply flawed and vulnerable to attacks

Tools used for scanning for **known Child Sexual Abuse Material (CSAM)** must not contain CSAM material itself as this would bring major risks. Thus, the only scalable technology to address this problem is by transforming the known content with a so-called perceptual hash function and by using a list of the resulting hash values to compare to potential CSAM material. A perceptual hash function needs to achieve two goals: (i) it should be easy to compute yet hard to invert and (ii) small changes to an image should result in small changes to the hash output, which means that even after image manipulation the known image can still be detected. While this sounds easy, after more than two decades of research there has been no substantial progress in designing functions that meet these properties.

Research has shown that for all known perceptual hash functions, it is virtually always possible to make small changes to an image that result in a large change of the hash value which allows evasion of detection (false negative). Moreover, it is also possible to create a legitimate picture that will be falsely detected as illegal material as it has the same hash as a picture that is in the database (false positive). This can be achieved even without knowing the hash database. Such an attack could be used to frame innocent users and to flood Law Enforcement Agencies with false positives – diverting resources away from real investigations into child sexual abuse.

These attacks are not theoretical: for concrete designs such as Photo DNA, Facebook’s PDQ hash function and Apple’s NeuralHash function, efficient attacks have been described in the literature. The only way to avoid such attacks for the time being is by keeping the description of the perceptual hash function secret. This “security by obscurity” not only goes against basic security engineering principles but, in practice, is only feasible if the perceptual hash function is known only to the service provider. In the case of end-to-end encryption, the hashing operation needs to take place on the client device. Thus, keeping the design secret is an illusion.

As scientists, we do not expect that it will be feasible in the next 10-20 years to develop a scalable solution that can run on users’ devices without leaking illegal information and that can detect known content (or content derived from or related to known content) in a reliable way, that is, with an acceptable number of false positives and negatives.

The proposal of the European Commission goes beyond the detection of known content. It also requires that **newly generated images or videos** with CSAM need to be detected based on “artificial intelligence” tools. In addition, the proposal requires that **grooming in communication services** including both text and audio should be detected using similar techniques. While some commercial players claim that they have made progress, the designs remain secret and no open and objective evaluation has taken place that demonstrates their effectiveness. Moreover, the state of the art in machine learning suggests that this is way beyond what is feasible today. In fact, any time that client-side designs have been evaluated (as in the case of prototypes funded by the UK Home office) they have been found to be neither effective nor compliant with privacy and human-rights law.

AI tools can be trained to identify certain patterns with high levels of precision. However, they routinely make errors, including mistakes that to a human seem very basic. That is because AI systems lack context and common sense. There are some tasks to which AI systems are
well-suited, but searching for a very nuanced, sensitive crime — which is what grooming behaviour is — is not one of these tasks.

At the scale at which private communications are exchanged online, even scanning the messages exchanged in the EU on just one app provider would mean generating millions of errors every day. That means that when scanning billions of images, videos, texts and audio messages per day, the number of false positives will be in the hundreds of millions. It further seems likely that many of these false positives will themselves be deeply private, likely intimate, and entirely legal imagery sent between consenting adults.

This cannot be improved through innovation: ‘false positives’ (content that is wrongly flagged as being unlawful material) are a statistical certainty when it comes to AI. False positives are also an inevitability when it comes to the use of detection technologies -- even for known CSAM material. The only way to reduce this to an acceptable margin of error would be to only scan in narrow and genuinely targeted circumstances where there is prior suspicion, as well as sufficient human resources to deal with the false positives -- otherwise cost may be prohibitive given the large number of people who will be needed to review millions of texts and images. This is not what is envisioned by the European Commission’s proposal.

The reporting system put forward in the draft CSAM proposal is likely to encourage novel attacks on detection technologies. This is because right now, providers have the discretion to sift out obvious false alerts. Under the new system, however, they would be required to report even content that seems unlikely to be CSAM. Besides the attacks we mention, many more are starting to appear in specialized academic venues, and we expect many more are being prepared by those motivated to share illicit material.

Finally, it has been claimed that detecting CSAM should be feasible as scanning for computer viruses is a widely deployed technology. While superficially both seem similar, there are essential differences. First, when a computer virus is detected, the user is warned and the virus can be removed. Second, a virus can be recognized based on a small unique substring, which is not the case for a picture or video: it would be very easy to modify or remove a unique substring with small changes that do not change the appearance; doing this for a virus would make the code inoperable. Finally, machine learning techniques can sometimes identify viral behaviour, but only when such behaviour can be precisely defined (e.g. code that copies itself) and thus detected. This is in opposition to defining CSAM for which clear boundaries cannot easily be established.

2. Technical Implications of weakening End-to-End Encryption

End-to-end encryption is designed so that only the sender and recipient can view the content of a message or other communication. Encryption is the only tool we have to protect our data in the digital realm; all other tools have been proven to be compromised. The use of link encryption (from user to service provider and from service provider to user) with decryption in the middle as used in the mobile telephone system is not an acceptable solution in the current threat environment. It is obvious that end-to-end encryption makes it impossible to implement scanning for known or new content and detection of grooming at the service provider.
In order to remedy this, a set of techniques called “Client-Side Scanning” (CSS) has been suggested as a way to access encrypted communications without breaking the encryption. Such tools would reportedly work by scanning content on the user’s device before it has been encrypted or after it has been decrypted, then reporting whenever illicit material is found. One may equate this to adding video cameras in our homes to listen to every conversation and send reports when we talk about illicit topics.

The only deployment of CSS in the free world was by Apple in 2021, which they claimed was state-of-the-art technology. This effort was withdrawn after less than two weeks due to privacy concerns and the fact that the system had already been hijacked and manipulated.

When deployed on a person’s device, CSS acts like spyware, allowing adversaries to gain easy access to that device. Any law which would mandate CSS, or any other technology designed to access, analyse or share the content of communications will, without a doubt, undermine encryption, and make everyone’s communications less safe as a result. The laudable aim of protecting children does not change this technical reality.

Even if such a CSS system could be conceived, there is an extremely high risk that it will be abused. We expect that there will be substantial pressure on policymakers to extend the scope, first to detect terrorist recruitment, then other criminal activity, then dissident speech. For instance, it would be sufficient for less democratic governments to extend the database of hash values that typically correspond to known CSAM content (as explained above) with hash values of content critical of the regime. As the hash values give no information on the content itself, it would be impossible for outsiders to detect this abuse. The CSS infrastructure could then be used to report all users with this content immediately to these governments.

If such a mechanism would be implemented, it would need to be in part through security by obscurity as otherwise it would be easy for users to bypass the detection mechanisms, for example by emptying the database of hash values or bypassing some verifications. This means that transparency of the application will be harmed, which may be used by some actors as a veil to collect more personal user data.

3. Effectiveness

We have serious reservations whether the technologies imposed by the regulation would be effective: perpetrators would be aware of such technologies and would move to new techniques, services and platforms to exchange CSAM information while evading detection.

The proposed regulation will harm the freedom of children to express themselves as their conversations could also be triggering alarms. National criminal law enforcement on-the-ground typically deals in a nuanced way with intimate messages between teenagers both around the age of consent. These technologies change the relationship between individuals and their devices, and it will be difficult to reintroduce such nuance. For other users, we have major concerns of the chilling effects created by the presence of these detection mechanisms.
Finally, the huge number of false positives that can be expected will require a substantial amount of resources while creating serious risks for all users to be identified incorrectly. These resources would be better spent on other approaches to protect children from sexual abuse. While most child protection work must be local, one way in which community legislation might help is by using existing powers (DMA/DSA) to require social network services to make it easier for users to complain about abuse, as it is user complaints rather than AI that in practice lead to the detection of new abuse material.

Signed,

Australia
Dr. Shaanan Cohney
Prof. Vanessa Teague

Austria
Prof. Dr. Elena Andreeva
Univ.-Prof. Dr. Rainer Böhme
Prof. Maria Eichsleider
Prof. Daniel Gruss
Prof. Dr. Martina Lindorfer
Univ.-Prof. Dr. Matteo Maffei
Prof. Stefan Mangard
Univ.-Prof. Dr. René Mayrhofer
Prof. Elisabeth Oswald
Univ.-Prof. Dr. Christian Rechberger
Dr. Michael Roland
Univ.-Prof. Edgar Weippl

Belgium
Prof. Dr. Rosamunde van Brakel
Prof. Claudia Diaz
Prof. Dr. Gloria González Fuster
Prof. Dr. Joris van Hoboken
Prof. Olivier Pereira
Prof. Thomas Peters
Prof. Bart Preneel
Prof. François-Xavier Standaert
Prof. Florentin Rochet
Prof. Nigel Smart
Prof. Mathy Vanhoef
Prof. Ingrid Verbauwhede

Brazil
Prof. Ian Brown
Prof. Alexandre Augusto Giron
Dr. Jean Martina
Prof. Dr. Marcos Antonio Simplicio Jr

Canada
Prof. Ian Goldberg
Prof. Florian Kerschbaum
Prof. David Lie
Prof. Nicolas Papernot

Czechia
Dr. Vit Bukac
Prof. Vashek Matyas
Masaryk University
Prof. Kamil Malinka
Brno University of Technology
Dr. Petr Svenda
Masaryk University
Dr. Martin Ukrop
Masaryk University

Denmark
Prof. Diego F. Aranha
Aarhus University
Prof. Carsten Baum
Technical University of Denmark
Prof. Joan Boyar
University of Southern Denmark
Prof. Ivan Damgård
Aarhus University
Fellow IACR
Dr. Christian Majenz
Technical University of Denmark
Prof. Claudio Orlandi
Aarhus University
Prof. Tyge Tiessen
Technical University Denmark
Prof. Dr. Emmanouil Vasilomanolakis
Technical University Denmark

Estonia
Dr. Dan Bogdanov
Personal capacity
Estonian Academy of Sciences

Finland
Prof. Kimmo Halunen
University of Oulu

France
Dr. Daniele Antonioli
EURECOM
Dr. Gustavo Banegas
Independent Researcher
Mr. Karthikeyan Bhargavan
Cryspen
Dr. Bruno Blanchet
Inria
Prof. Olivier Blazy
École Polytechnique
Prof. Christina Boura
University of Versailles
Dr. Anne Canteaut
Inria
Dr. Veronique Cortier
CNRS
Dr. Jannik Dreier
Université de Lorraine
Prof. Antonio Faonio
EURECOM
Dr. Caroline Fontaine
CNRS
Dr. Aurélien Francillon
EURECOM
Dr. Aymeric Fromherz
Inria
Dr. Pierrick Gaudry
CNRS
Prof. Elham Kashefi
CNRS and University of Edimburgh
Dr. Steve Kremer
Inria
Dr. Gaétan Leurent
Inria
Dr. Pierre Laperdrix
CNRS
Dr. P. G. Maciotti
Medicines du Monde
Prof. Melek Önen
EURECOM
Dr. Maria Naya Plasencia
Inria
Dir. Research Catuscia Palamidessi
Inria
Dr. Léo Perrin
Inria
Dr. Yann Rote
Université Paris-Saclay
Dr. Emmanuel Thomé
Inria

Germany
Dr. Ali Abassi
CISPA Helmholtz Center for Information Security
Prof. Patricia Arias Cabarcos
Paderborn University
Dr. Gilles Barthe
Max Planck Institute for Security and Privacy
Dr. Sebastian Berndt
University of Lübeck
Dr. Asia Biga
Max Planck Institute for Security and Privacy
Prof. Dr. Kevin Borgolte
Ruhr University Bochum
Dr. Sven Bugiel
CISPA Helmholtz Center for Information Security
Dr. Rebekka Burkholz
CISPA Helmholtz Center for Information Security
Prof. Dr. Cas Cremers
CISPA Helmholtz Center for Information Security
Prof. Thomas Eisenbarth University of Lübeck
Prof. Thorsten Holz CISPA Helmholtz Center for Information Security
Prof. Tibor Jager University of Wuppertal
Prof. Dr. Stefan Katzenbeisser University of Passau
Dr. Dietmar Kammerer Weizenbaum Institute for the Networked Society
Dr. Franziskus Kiefer Cryspen
Dr. Katharina Krombholz CISPA Helmholtz Center for Information Security
Prof. Anja Lehmann Hasso-Plattner-Institute, University of Potsdam
Dr. Wouter Lueks CISPA Helmholtz Center for Information Security
Dr. Christian Mainka Ruhr University Bochum
Prof. Dr. Esfandiar Mohammadi University of Lübeck
Dr. Veelasha Moonsamy Ruhr University Bochum
Prof. Dr. Andreas Peter University of Oldenburg
Dr. Giancarlo Pellegrino CISPA Helmholtz Center for Information Security
Prof. Joachim Posegga University of Passau
Dr. Elissa Redmiles Max Planck Institute for Software Systems
Dipl. Ir. Rainer Rehak Weizenbaum Institute for the Networked Society
Prof. Konrad Rieck Technische Universität Berlin
Prof. Paul Rössler FAU Erlangen-Nürnberg
Prof. Dr. Christian Rossow CISPA Helmholtz Center for Information Security
Prof. Dr. Sebastian Schinzel Münster University of Applied Sciences
Prof. Thomas Schneider Technische Universität Darmstadt
Prof. Dr. Dominique Schröder Friedrich-Alexander Universität Erlangen-Nürnberg
Dr. Peter Schwabe Max Planck Institute for Security and Privacy
Prof. Juraj Somorovsky Paderborn University
Dr. Ben Stock CISPA Helmholtz Center for Information Security
Prof. Thorsten Strufe KASTEL/Karlsruhe & Centre for Tactile Internet with Human-in-the-Loop, Dresden
Prof. Florian Tschorsch TU Berlin and HU Berlin
Dr. Nils Ole Tippenhauer CISPA Helmholtz Center for Information Security
Prof. Christian Wressneger Karlsruhe Institute of Technology
Prof. Dr. Yuval Yarom Ruhr University Bochum
Dr. Xiao Zhang CISPA Helmholtz Center for Information Security
Dr. Yixin Zou Max Planck Institute for Security and Privacy

Greece
Prof. Vasiliki Diamantopoulou University of the Aegean
Prof. Christos Kalionatis University of the Aegean
Prof. Georgios Kambourakis University of the Aegean
Prof. Costas Lambrinoudakis University of Piraeus
Prof. Emmanuelou Magkos Ionian University
Prof. Stefanos Gritzalis University of Piraeus and Hellenic Authority for Communication Security and Privacy

Ireland
Dr. TJ McIntyre University College Dublin Sutherland School of Law & Digital Rights Ireland
Dr. Stephen Farrell Trinity College Dublin

Israel
Prof. Orr Dunlekmnan University of Haifa
Dr. Yossi Oren Ben-Gurion University
Dr. Eyal Ronen Tel Aviv University
Dr. Mahmood Sharif Tel Aviv University

Italy
Prof. Stefano Calzavara Università Ca’ Foscari Venezia
Prof. Mauro Conti University of Padua
Prof. Bruno Crispo University of Trento
Prof. Paolo Falcarin University of Venice
Prof. Fabio Massaci
University of Trento/Vrije Universiteit Amsterdam

Prof. Giuseppe Persiano
Università di Salerno

Prof. Daniele Venturi
Sapienza University of Rome

Prof. Stefano Zanero
Politecnico di Milano

Liechtenstein

Prof. Giovanni Apruzzese
University of Liechtenstein

Luxembourg

Prof. Dr. Gabriele Lenzini
University of Luxembourg

Prof. Peter Y A Ryan
University of Luxembourg

The Netherlands

Dr. Gunes Acar
Radboud University Nijmegen

Prof. Dr. Lejla Batina
Radboud University Nijmegen

Prof. Dr. ir. Herbert Bos
Vrije Universiteit Amsterdam

Dr. Corinne Cath
Delft University of Technology

Dr. Andrea Continella
University of Twente

Prof. Joan Daemen
Radboud University Nijmegen

Dr. Zekeriya Erkin
Delft University of Technology

Prof. Cristiano Giuffrida
Vrije Universiteit Amsterdam

Dr. Seda Gürses
Delft University of Technology

Prof. Jaap-Henk Hoepman
Radboud University Nijmegen

Prof. Andreas Hülsing
Eindhoven University of Technology

Prof. Bart Jacobs
Radboud University Nijmegen

Prof. Dr. Tanja Lange
Eindhoven University of Technology

Prof. Ot van Gaalen
University of Amsterdam

Prof. Michel van Eeten
Delft University of Technology

Dr. Heloise Vieira
Eindhoven University of Technology

Prof. Ben Wagner
Delft University of Technology

New Zealand

Prof. Steven Galbraith
University of Auckland

Norway

Prof. Helger Lipmaa
Simula UiB

Poland

Prof. Stefan Dziembowski
University of Warsaw

Dr. Anna Ratecka
Jagiellonian University in Krakow

Portugal

Ms. Sofia Celi
Brave

Prof. Manuel Eduardo Correia
University of Porto

Prof. Manuel Barbosa
University of Porto and INESC TEC

Prof. Hugo Pacheco
University of Porto

Prof. Bernardo Portela
University of Porto

Prof. Henrique Santos
Universidade do Minho

Prof. Nuno Santos
INESC-ID and University of Lisbon

Taiwan

Dr. Lorenz Panny
Academia Sinisa

Turkey

Prof. Cihangir Tezcan
Middle East Technical University

United Arab Emirates

Prof. Michail Maniatakos
New York University Abu Dhabi

Prof. Chirstina Pöpper
New York University Abu Dhabi
United Kingdom
Dr. Ruba Abu-Salma King’s College London
Prof. Martin Albrecht King’s College London
Prof. Ross Anderson Universities of Cambridge and Edinburgh
Prof. Reuben Binns University of Oxford
Prof. Ioana Boureanu University of Surrey
Dr. Jaya Klaara Brekke Nym Technologies
Prof. Lorenzo Cavallaro University College London
Dr. Michele Ciampi University of Edinburgh
Prof. Liqun Chen University of Surrey
Dr. Richard Clayton University of Cambridge
Dr. Partha Das Chowdhury University of Cambridge
Dr. Benjamin Dowling University of Sheffield
Dr. François Dupressoir University of Bristol
Dr. Tariq Elahi University of Edinburgh
Prof. Hamed Haddadi Imperial College London
Prof. Ioana Boureanu University College London
Dr. Alice Hutchings University of Cambridge
Dr. Dennis Jackson Mozilla
Dr. Rikke Jensen Royal Holloway, University of London
Prof. Adam Joinson University of Bath
Dr. Philipp Jovanovic University College London
Prof. Vasilis Katos Bournemouth University
Prof. Aggelos Klavias University of Edinburgh
Dr. Bernardo Magni University of Manchester
Prof. Corinne May-Chahal University of Lancaster
Prof. Keith Martin Royal Holloway, University of London
Dr. Maryam Mehrnezhad Royal Holloway, University of London
Prof. Sarah Meiklejohn University College London
Prof. Steven Murdoch University College London
Prof. Douwe Korff London Metropolitan University
Dr. Daniel Page University of Bristol
Dr. Claudia Peersman University of Bristol
Dr. Fabio Pierazzi King’s College London
Prof. Awais Rachid University of Bristol
Dr. Luc Rocher University of Oxford
Dr. Kaspar Rosager Ludvigsen University of Edinburgh
Dr. Christos Sagrados King’s College London
Dr. Siamak Shahandashti University of York
Dr. Jose Tomas Llanos University College London
Dr. Michael Veale University College London
Dr. Niovi Vavoula Queen Mary University of London
Dr. Christian Weinert Royal Holloway, University of London
Prof. Alan Woodward University of Surrey

United States of America
Prof. Giuseppe Atteniese George Mason University
Prof. Adam J. Aviv George Washington University
Prof. Steven Bellovin Columbia University
Prof. Matt Blaze Georgetown University McDevitt Chair of CS and Law
Prof. Álvaro Cárdenas University of California, Santa Cruz
Prof. Chandrasekaran University Illinois Urbana-Champaign
Prof. Nicolas Christin Carnegie Mellon University
Mr. Roger Dingleidine The Tor Project
Prof. Zakir Durumeric Stanford University
Dr. Kelsey Fulton Colorado School of Mines
Dr. Simson L. Garfinkel Digital Corpora Project Fellow AAAS, ACM, IEEE
Prof. Christina Garman Purdue University
Prof. Matthew D. Green Johns Hopkins University
Prof. Daniel Genkin
Prof. Paul Grubbs
Dr. Joseph Lorenzo Hall
Dr. Britta Hale
Prof. Emeritus Martin Hellman
Prof. Nadia Heninger
Prof. Nicholas Hopper
Prof. Gabriel Kaptchuk
Prof. Vasileios Kemerlis
Dr. Jennifer King
Prof. Engin Kirda
Prof. Susan Landau
Prof. Anna Lysyanskaya
Prof. Abigail Marsh
Prof. Michelle Mazurek
Prof. Ian Miers
Prof. Prateek Mittal
Ms. Riana Pfiefferkorn
Prof. Michalis Polychronakis
Dr. Niels Provos
Prof. Aanjan Ranganathan
Prof. Amir Rahmati
Prof. Franziska Roesner
Prof. Ronald L. Rivest
Dr. Sarah Scheffler
Prof. Barbara van Schewick
Prof. Bruce Schneier
Prof. Adam Shostack
Nick Sullivan
Dr. Santiago Torres-Arias
Prof. Daniel Votipka
Prof. David Wagner
Prof. Daniel J. Weitzner
Dr. Lian Wang
Prof. Christo Wilson
Prof. Matthew Wright

Singapore
Prof. Thomas Peyrin

South Korea
Prof. Sang Kil Cha

Spain
Dr. Jorge Blasco Alis
Prof. Pino Caballero-Gil
Dr. Ignacio Cascudo
Prof. Josep Domingo-Ferrer
Dr. Dario Fiore
Dr. Gemma Galdon Clavell
Prof. Maribel González Vasco
Dr. Marco Guarnieri
Dr. Jordi Herrera-Joancomartí
Prof. Llorenç Huguet
Dr. Guillermo Navarro-Aribas
Prof. Fernando Pérez-González
Dr. Cristina Perez-Sola
Prof. Jose Such
Dr. Carla Ráfols
Prof. Josep Rifà

KAIST

Universidad Politécnica de Madrid
University of La Laguna
IMDEA Software Institute
Universitat Rovira i Virgili
IMDEA Software Institute
Universitat Carlos III de Madrid
IMDEA Software Institute
University Autònoma de Barcelona
Balearic Island University
Universitat Autònoma de Barcelona
University of Vigo
University Autònoma de Barcelona
Universitat Pompeu Fabra
Universitat Autònoma de Barcelona
Prof. Juan Tapiador
Dr. Narseo Vallina-Rodríguez

Universidad Carlos III de Madrid
IMDEA Networks Institute

Sweden
Prof. Simone Fischer-Hübner
Karlstad University & Chalmers University of Technology
Prof. Dr.-Ing. Meiko Jensen
Karlstad University
Prof. Panos Papadimitratos
KTH Royal Institute of Technology Fellow IEEE
Dr. Tobias Pulls
Karlstad University
Prof. Vicenç Torra
Umeå University Fellow IEEE

Switzerland
Prof. Srdjan Capkun
ETH Zurich Fellow IEEE
Prof. Bryan Ford
EPFL
Dr. Julia Hesse
IBM Zurich Fellow IACR
Prof. Kenneth Paterson
ETH Zurich Fellow IACR
Prof. Mathias Payer
EPFL
Dr. Apostolos Pyrgelis
EPFL
Dr. Raphael M. Reischuk
National Test Institute for Cybersecurity NTC
Prof. Shweta Shinde
ETH Zurich
Prof. Carmela Troncoso
EPFL